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Neskuehaev's Method of Indexing Powder Patterns Applied 
to Systems of Intermediate Symmetry 
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Neskuchaev's method for indexing powder patterns of crystals belonging to the tetragonal, hexagonal 
and rhombohedral systems is rationalized to include the effects of increasing Bragg angle, the linear 
dependence condition, the repetition of indices between systems and the 'equivalence' property. Sets 
of numbers corresponding to the possible indices of two initial lines of the pattern are systematically 
searched until a set is obtained that describes all the lines. The procedure is illustrated by means of the 
powder pattern for zinc. 

T h e o r e t i c a l  cons idera t ions  

The usual equations connecting the lattice parameters 
and the Bragg angle or d spacing of the ith reflexion, 
for crystals of the tetragonal, hexagonal and rhombo- 
hedral systems, can be written in the form 

f i  = Axe + Bye , (1) 

where f i =  sin20t=22/4d 2, A and B are constants char- 
acteristic of the unit-cell geometry, and xe, ye are inte- 
gers dependent on hkl and the crystal system. Values 
of xe, y~, subject to the condition xi, y~<4, are given 
in Table 1 for the systems given above and all possible 
values of hkl. Higher values of xe,ye are given by 
Mirkin (1961). 

Neskuchaev (1931) has shown that if two linearly 
independent values 3q,J~ are selected from the first few 
values of J~ in equation (1), that is, values for which 

D=IxxY~]  ~ O ' x 2 y 2  (2) 

then the following relations hold: 

f i =  mef  l + mf2 , (3) 

x~ = me Xl + nt X2 ] 
and (4) 

Ye=m~ Y l + n i y 2 J '  ¢ 

where l x2Y2 [ ]xlyl I 
xeye, xeye 

me = ne -- 
D D 

and i>  3. 

(5) 

The procedure for indexing a powder pattern is then 
as follows. Two linearly independent values fi  and f2 
are selected [i.e. values which satisfy equation (2)], and 
the remaining values of f i  are then expressed in terms 
of linear combinations o f f l  and j~. This gives the set 
of numbers mi, he, and using equations (4) and Table 2, 
definite values of xl,Yx and x2,Y2 (each not greater 
than 4) are assigned to the two lines selected initially. 

From the tentative set of numbers lXlYl] ,  
I i 

xe,yi are 
[ [ x2Y2 

calculated from equation (4), and then compared with 
the values in Table 1. If the tentative set of numbers 
has been assigned correctly, and provided the experi- 
mental precision is adequate, all the values of xe,ye f it  
one or other of the crystal systems given in Table 1. 

The number of tentative sets theoretically possible, 
with 

xe,ye < 4 ,  (6) 

is given by the permutations of 11, 11 and 6 quantities 
taken 2 at a time, and is thus 

Table 1. x ,y  as a function o f  hkl for  tetragonal, 

Tetragonal system Hexagonal system 

hkl x = h z + k2 y = 12 hkl x = h2 + hk + k2 y = 12 
001 0 1 001 0 1 
002 0 4 002 0 4 
100 1 0 100 1 0 
101 1 1 101 1 1 
102 1 4 102 1 4 
110 2 0 110 3 0 
111 2 1 111 3 1 
112 2 4 112 3 4 
200 4 0 200 4 0 
20l 4 1 201 4 1 
202 4 4 202 4 4 

hexagonal and rhombohedral systems (x ,y  < 4) 

Rhombohedral system 
^ 

hkl x2=h2-kk2=)-12 y=hk-kkl+lh 
100 1 0 
I10 2 i 
110 2 1 
i l l  3 i 
111 3 3 
200 4 0 
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Table 2" P°ssible values ° f  D (= ] XlYl ] ) fOr tetragOnal' hexagOnal and rhOmbOhedral systems (x'y < [ 

Tetragonal  Hexagonal  Tetragonal  Hexagonal  R h o m b o h e d r a l  
system system system system system 

~, ~ ^ , ^ • ^ • ^ , 

"N D N D "N D N D "N O N D "N D N D "N D N D 
1 O1 16 10 1 O1 16 10 7 10 7 10 36 lO 44 21 

10 O1 10 O1 41 41 2T 10 
O1 20 O1 30 10 10 21 2I  
20 01 30 01 44 44 2I  21 

01 40 01 40 8 11 8 11 37 10 45 21 
40 01 40 01 14 14 21 10 

04 10  04 10 21 31 3I 40 
10 04 10 04 24 34 40 3I  

04 20 04 30 41 41 38 10 46 3I  
20 04 30 04 44 44 3I  10 

04 40 04 40 9 11 18 20 24 11 32 30 21 40 
40 04 40 04 20 11 30 11 40 21 

2 01 2 01 14 20 14 30 39 10 47 33 
11 11 20 14 30 14 33 10 

01 01 21 40 25 31 33 40 3I 33 
21 31 40 21 40 31 33 3I 

01 01 24 40 34 40 40 2I  48 
41 41 40 24 40 34 3I 

04 04 10 11 26 11 2I  40 
14 14 21 31 40 2I  

04 04 14 14 41 2I  49 33 
24 34 24 34 33 2I  

04 04 21 27 31 42 21 50 3I 
44 44 41 41 3I 21 

3 01 3 01 24 34 43 21 51 33 
14 14 44 44 33 21 

01 01 11 11 28 11 40 33 
24 34 24 34 33 40 

01 01 2l  29 31 
44 44 44 44 

4 04 17 11 4 04 17 11 12 11 19 40 12 l l  19 40 
11 04 11 04 40 11 40 11 

04 21 04 31 14 40 14 40 
21 04 31 04 40 14 40 14 

04 41 04 41 13 11 13 11 
41 04 41 04 41 41 

5 10 5 10 14 14 
11 11 44 44 

20 30 14 14 20 21 30 14 34 31 
21 31 21 14 31 14 

40 40 24 41 31 34 35 41 
41 41 41 24 41 34 

10 10 15 14 21 41 15 14 21 41 
14 14 41 14 41 14 

20 30 
24 34 

40 40 
44 44 

6 10 22 10 
21 31 

10 10 
24 34 

20 23 30 
41 41 

20 30 
44 44 

N is the number  of  each 'equivalence group ' .  
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11 x 10 + 11 x 10 + 6 x 5 = 250 (see Table 1). 

Of these 250 sets, 22 are excluded by the linear de- 
pendence condition [equation (2)], and the obvious in- 
crease in Bragg angle with order of reflexion makes 
a further 65 sets inadmissible. There are thus 163 pos- 
sible sets that could be tested to find the correct value 
of D. Certain sets are common to the tetragonal and 
the hexagonal or rhombohedral systems; thus the num- 
ber is reduced to 125. However, if account is taken 
of the 'equivalence' property of certain reflexions, only 
51 tests are necessary. 

Equivalent sets of numbers for the tetragonal and 
hexagonal systems are given by 

x ,  i I and I 
x 2 Y 2 ,  ' I pxZyz, ' xzqyz [ pxzqy2 

where p and q, in accordance with equations (2) and 
(6), are integers having the following values: 

Ptet 1 : 2 : 4, Phex 1 : 3 : 4 and qtet = qhex 1 : 4 .  

It can be proved that the last set of numbers in (7) 
is characteristic of the other sets in the series. If the 
collection of numbers x~,y~ corresponding to the last 
set in (7) does not compare with the values in Table 1, 
then neither will the other sets of the series. If x~,y~ 
correspond to the values in Table 1, then other series 
given by (7) may be acceptable, and the true set is 
that which yields the collection of integers x~,yi having 
no common factor. 

It can also be shown that there are series of 'equiv- 
alent' sets of numbers for the rhombohedral system, 
which can be denoted by 

[xlyllx2Y2 and [xiYi] ".r2y2 (8) 

It follows from the above considerations that it is only 
necessary to test the last sets in series (7) and (8), and 
the number of tests thus reduces to 51. In practice, 
however, the number of tests will normally be consider- 
ably less than this. 

All possible types of set, subject to condition (6), 
are listed in Table 2 for the systems under considera- 
tion. The 163 sets are divided into 51 'equivalence' 
groups, some of which are common to both the tetra- 
gonal and hexagonal systems. It is evident that m¢,n~ 
can have integral or fractional values, and that the 
fractions occurring most frequently are multiples of 
1 ~, ½ and ¼. 

Application to the indexing of the powder pattern of zinc 

Data for zinc taken from N.B.S.  Circular No. 539 
(1953) have been indexed in order to illustrate the 
above procedure. Experimental quantities are denoted 
by f ; ,  etc., and calculated values by ~ .  The first two 
values of the data are linearly independent (that is, 
they satisfy the condition f '2f~-Can integer), and these 
may be taken asf~ andf~. In this particular case, since 
suitable values of f ;  are available at higher angles, 
refined values of f~ and f~ can be obtained, namely, 
f~=0.1634 and f~=0.1878. Using the refined values, 
the remaining f ;  are expressed in terms off~ and.f~. 
The most frequently occurring values of mi, m with the 
corresponding values of m~f; and mf'2, are given in 
Table 3, and f ;  for each line is given in column 2 of 
Table 4. m~f~ and n~f~ are combined according to equa- 
tion (3) to giver,:, and values are selected to correspond 
with f ; ,  to within the experimental error. (In the case 
considered, the maximum error in f ;  ( = f ; - j ~ ) i s  
+ 0.0010). j~ is listed in column 3 of Table 4. 

The values of mi, m in each of the linear combina- 
tions (columns 4 and 5) are then analysed in accor- 
dance with equations (4) to (6), and a search is made 
through the final entries in each 'equivalence group' 
in Table 2, giving possible tentative sets of numbers. 
There are in fact only 18 possible sets out of the total 
of 51. The corresponding values of xi,y~ are then cal- 
culated from equation (4) for each set, and compared 
with the entries in Table 1. This yields the tentative 
set l°4l in 'equivalence group' no. l, hexagonal sub- 
division, in Table 2. It is evident from this procedure 

m o r n  ¼ 
mfl' 0.0408 
nf2" 0"0470 

Table 3. mf~ and n f~ for  the most frequently occurring values o f  m and n 
½ ½ ~ ¼ 1 2 3 4 5 

0"0545 0"0817 0"1089 0"1226 0"1634 0"3268 0"4902 0"6536 0"8170 
0"0626 0"0939 0"1252 0"1408 0-1878 0"3756 0-5634  0"7512 

Line 
n o .  

1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Table 4. Indexing o f  the powder pattern for  zinc 

f l" f~ = m~f l" + nil2" m~ n~ x~ y~ hkl 
2 3 4 5 6 7 8 

0"1635 0-1634=.f1' ('refined) 1 0 0 4 002 
0.1877 0.1878 =f2" (refined) 0 1 1 0 100 
0.2287 0.2286=¼f~'+f2" ¼ 1 1 1 101 
0.3514 0"3512 =f~'+fz' 1 1 1 4 102 

t ...~@ • 0.5553 0.5554=~f~ Jz ~ 1 1 9 103 
0.5636 0.5634 = 3f2' 0 3 3 0 110 
0.6535 0.6536=4fj' 4 0 0 16 004 
0.7269 0.7268 =f~' + 3f2' 1 3 3 4 112 
0.7512 0.7512=4f2' 0 4 4 0 200 
0.7921 0.7920=¼f~'+4f2" ¼ 4 4 1 201 
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that for the linear combinations given by equation (3) 
only those which yield the least difference between f~ 
and./~ are in general acceptable. 

The next step is to establish the true set of numbers 
which corresponds to the two lines selected initially. 
This is achieved by testing all sets in the above group 
in accordance with the 'equivalence' property defined 
by (7) and (8). Using the values of m~,n~ obtained 
previously, equation (4) gives fractional values of y~ 
for the first three sets, which is inadmissible. Of the 
remaining sets only 1°41 fits the data for the hexagonal 
system in Table 1 and also yields a collection of inte- 
gers x~ y~ that do not contain a common integral fac- 
tor. The substance under investigation thus belongs to 
the hexagonal system and for the first two lines, x~ = 0, 
Yl = 4 and x2 = 1, Y2 = 0. The values of hkl for each line 
are then obtained from Table 1. xi,y~ and hkl are given 
in columns 6, 7 and 8 of Table 4. 

Conclusion 

Neskuchaev's method for indexing powder patterns, 
incorporating the rationalization suggested above, not 
only becomes more general, but also simpler than other 
methods employed for systems of intermediate sym- 
metry. The method is therefore recommended as the 
principal one for patterns in this symmetry range, and 

as a subsidiary one for patterns of low symmetry. 
In the latter case, it is possible to establish that the 
substance under investigation belongs to a low- 
symmetry system, thus simplifying the application 
of more general methods of indexing (Ito, 1949, 
1950; Peiser, Rooksby & Wilson, 1955; Az~iroff & 
Buerger, 1961). 

The authors are much indebted to Dr J. I. Langford, 
Department of Physics, The University, Birmingham, 
England for assistance with the preparation of the 
English text. 
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Parameter Errors in Polar Space Groups Caused by Neglect of Anomalous Scattering 
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(Received 18 October 1966) 

A simple formula is given for the atomic coordinate error when d f "  is neglected. With Cu K~ radiation 
the effect is important for most elements and can reach 0.08 A. 

1 

Ueki, Zalkin & Templeton (1966) have recently pointed 
out the serious coordinate errors which can result from 
the neglect of the imaginary component Af" of the 
anomalous scattering in the ten polar point groups. In 
these groups the position of the origin in one or more 
dimensions is not fixed by reference to symmetry ele- 
ments. In Ueki's example of thorium nitrate penta- 
hydrate, space group Fdd2, Mo Kc~ radiation, the 
neglect of A f " =  9 for thorium caused an error of about 

0"05 A in the z coordinate of Th relative to those of 
the lighter atoms. 

In the present note we consider the problem further 
and in particular point out that the serious conse- 
quences of the neglect of Af"  are not confined to heavy 
elements. As we have remarked elsewhere (McDonald 
& Cruickshank, 1967) the effect of the inclusion, with 
Cu Ke radiation, of Af"=  0.6 for the S atoms in S309, 
space group P21nb, was to produce changes of 0-02 A 
in some bond lengths. 

2 

* Present address: Chemistry Department, University of 
Manchester Institute of Science and Technology, Sackville 
Street, Manchester 1, England. 

I" Present address: Chemistry Department, University of 
Leeds, Leeds 2, England. 

For a centrosymmetric crystal the relation IF(hkl)l = 
IF(hfd)l holds by virtue of the symmetry. For a non- 
centrosymmetric crystal the same relation is true, pro- 
vided Af"  is negligible (Friedel's law). In consequence 


